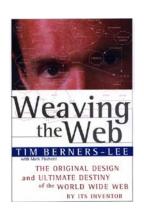
Seminari LIMES

Pisa, marzo-maggio 2019

Linked Open Data

Oreste Signore (già W3C Italy)

Slides at: http://www.orestesignore.eu/talks/2019/sw/lod.pdf

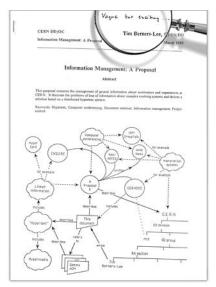


Talk layout

- The birth of Linked Open Data (LOD)
- Linked Open Data
 - √ benefits, principles, levels
- Web of Data & Semantic Web
 - ✓ Data integration
 - √ RDF (Resource Description Framework)
- One step forward: ontology
- Conclusion

Once upon a time...

- **❖** 1970(?) A boy was talking with his father:
 - ✓ How to make a computer intuitive, able to complete connections as the brain did
- 1980, while at CERN:


✓ Suppose all the information stored on computers everywhere were linked.

Suppose I could program my computer to create a space in which anything could be linked to anything... There would be a single, global information space.

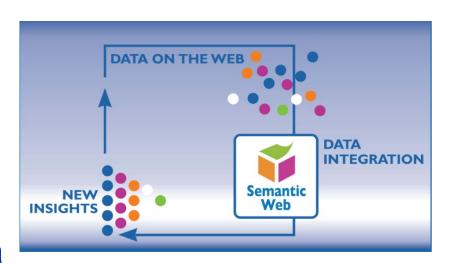
- 1989 <u>Vague but exiciting</u>
- ...and there was the Web...
- ***** 1994
 - ✓ "The very first International World Wide Web Conference, at CERN, Geneva, Switzerland, in September 1994"
 http://www.w3.org/Talks/WWW94Tim/
- 1999 Semantic Web Activity in W3C (now: Data Activity)
- 2007 LOD (W3C Linking Open Data project)

Web architecture

- Decentralization
- Basics
 - **√ URI**
 - The most fundamental innovation of the Web
 - Can address everything (resources, concepts)
 - **✓ HTTP**
 - Format negotiation
 - Protocol to fetch resources
 - **✓ HTML**
 - Structuring documents
- RDF (Resource Description Framework)
 - ✓ will be for the Semantic Web what HTML has been for the Web

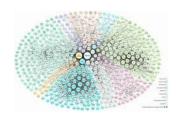
Web of Data and Semantic Web

Semantic Web


- ✓ Extends Web principles from documents to data
- ✓ Creates the "Web of Data"

Data (and not only data) can be

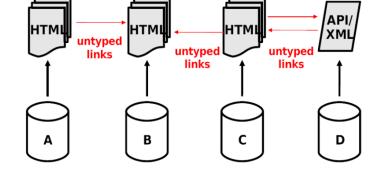
✓ shared and reused in the Web


RDF

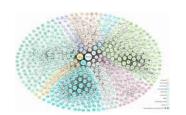
- ✓ Resource Description Framework
- ✓ gives the abstraction layer to integrate data on the Web

Linked Data

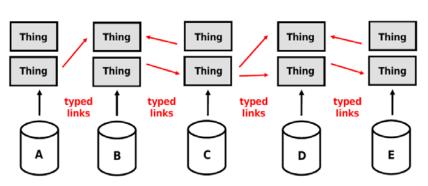
- ❖ A term used to describe a recommended best practice for *exposing*, *sharing*, and *connecting* pieces of data, information, and knowledge on the Semantic Web using URIs and RDF
 - √ (quoted in Wikipedia)
- See also:
 - √ http://linkeddata.org/
 - √ http://www.w3.org/standards/semanticweb/data



LOD: the benefits (1)


- From the Web of Documents ...
 - ✓ A global filesystem
 - ✓ Documents are the primary objects
 - √ (Fairly structured) documents connected by untyped links
 - √ Implicit semantics of content and links

- ✓ Designed for human consumption
- √ Simplicity ... but disconnected data



LOD: the benefits (cont.)

- ... to the Web of Data
 - ✓ A global database
 - ✓ Primary objects: Things (or description of things)
 - √ Typed links between things (including documents)
 - √ High degree of structure in (description of) things
 - ✓ Explicit semantics of content and links
 - ✓ Designed for
 - Machines (first)
 - Humans (later)

LOD: the principles

What does LOD mean?

Web of things in the world, described by data on the Web

- 1. Use URIs as names for things
- 2. Use HTTP URIs so that people can look up those names.
- 3. When someone looks up a URI, provide useful information, using the standards (RDF*, SPARQL)
- 4. Include links to other URIs, so that they can discover more things.

Tim Berners-Lee 2007

http://www.w3.org/DesignIssues/LinkedData.html

Use URIs as names for things

- URI identify:
 - ✓ Documents and digital contents available on the Web
 - ✓ Real objects and abstract concepts
- Only HTTP URI, not other schemas like URN or DOI, because:
 - ✓ Provide a simple way to create globally unique names in a decentralized fashion, as every owner of a domain name, or delegate of the domain name owner, may create new URI references
 - ✓ They serve not just as a name but also as a means of accessing information describing the identified entity

Use HTTP URIs so that people can look up those names

- HTTP is the universal protocol to access Web resources
- *All HTTP URI must be "dereferenceable"
- When URIs identify real objects, it's essential distinguish objects from documents that describe them

When someone looks up a URI, provide useful information, using the standards (RDF*, SPARQL)

- Use a single data model to publish data on the Web: RDF
- RDF data model is very simple and strictly coherent with Web architecture

Include links to other URIs, so that they can discover more things

- Links (named RDF links) are "typed"
- Set RDF links towards other data sources on the Web
 - ✓ An external RDF link (having p and/or o defined in an external dataset) allows to access data on remote servers
 - √ The process is repeated in cascade
 - ✓ External RDF links are the glue that connects data islands into a global, interconnected data space

The LOD five levels

On the web

Available on the web (whatever format) but with an open licence, to be Open Data

Machine-readable data

Available as machine-readable structured data (e.g. excelinstead of image scan of a table)

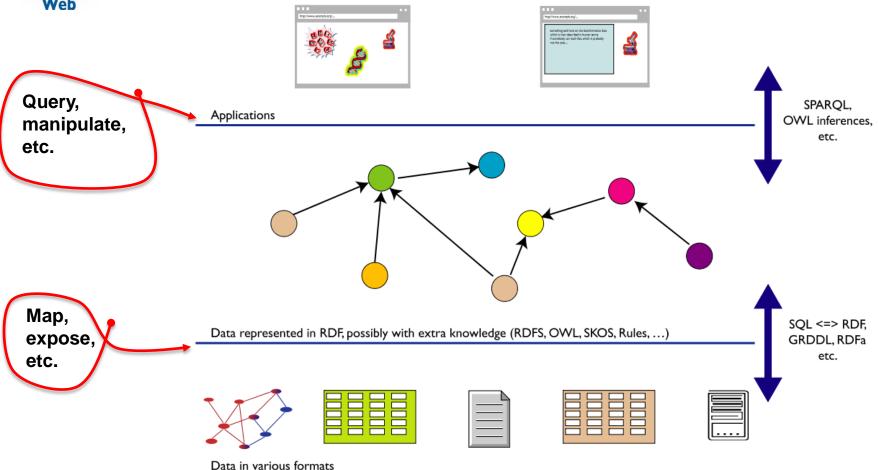
Non-proprietary format

as (2) plus non-proprietary format (e.g. CSV instead of excel)

RDF standards

All the above plus, Use open standards from W3C (RDF and SPARQL) to identify things, so that people can point at your stuff

Linked RDF


All the above, plus: Link your data to other people's data to provide context

SW and Data Integration

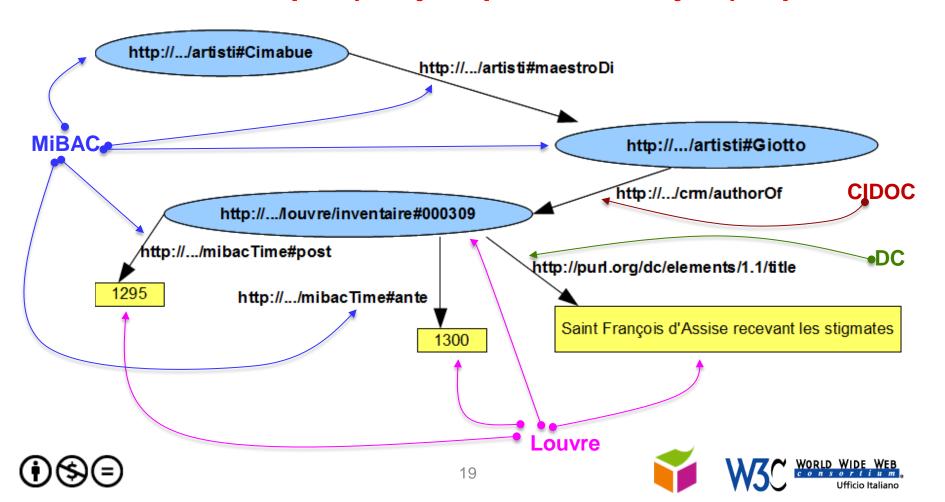
No need to put all your data in RDF!



SW and Data Integration: some advantages

- Representation as a graph
 - ✓ independent of the actual structure of the data
- Changes to the format of the local database, etc.
 - ✓ have no influence on the general level
 - ✓ affect only the level of the step of exporting data (schema independence)
- You can
 - √ add new data
 - √ add more connections

seamlessly, regardless of the structure of other data sources



A RDF graph (annotated)

...a set of s-p-o (subject-predicate-object) triples

Is RDF enough?

- RDF is a universal language to describe resources using your own vocabulary
- Syntactically correct RDF statements (s-p-o triples) can be meaningful or meaningless
- We need to express constraints
- Here come RDFS, OWL (Ontology languages)

One step forward: ontology

Models knowledge in its:

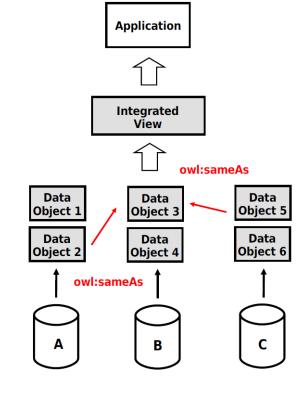
- ✓ Intension (terminological knowledge: definitions of concepts and roles)
- ✓ Extension (assertional knowledge: instances or definitions of individuals)
- A simple definition (Jim Hendler)
 - ✓ A set of knowledge terms, including the vocabulary, the semantic interconnections and some simple rules of inference and logic for some particular topic
- Many definitions, but:
 - ✓ clear understanding
 - √ consensus among the ontology community
- An ontology includes:
 - √ terms explicitly defined
 - √ knowledge we can infer
- An ontology aims to capture consensual knowledge, to reuse and share across software applications and by groups of people
- A shared ontology
 - ✓ Allows machines to understand data
 - ✓ Makes data really interoperable

Reconciling differences

For classes:

✓ owl:equivalentClass: two classes have the same individuals

For properties:


√ owl:equivalentProperty

For individuals:

✓ owl:sameAs: two URIs refer to the same concept ("individual")

owl:sameAs

✓ is a main mechanism of "linking"


```
</
```


Up to 7th level

- Providing 5-star Linked Data is just the beginning.
- To actually make use of the datasets, consumers need:
 - √ more support in getting to know and access them
 - ✓ a better grasp of their quality and provenance.
- Extend the model with two additional stars

Levels 6 and 7

Schema and documentation

Provide your data with a schema and documentation so that people can understand and re-use your data easily

★★★★★★★ Validation and provenance

Validate your data and denote its provenance so that people can trust the quality of your data

References:

- http://www.ldf.fi/
- √ http://www.seco.tkk.fi/publications/2014/hyvonen-et-al-ldf-2014.pdf

Work done?

- The ontology (intension):
 - ✓ Models concepts and relationships
 - **✓ Supports multilinguality**
 - √ Can be referenced by everybody
- Data (extension):
 - ✓ Available as RDF
 - √ Can be queried via SPARQL
 - ✓ Can be linked by everyone from everywhere
- ❖ No more a single information silo!

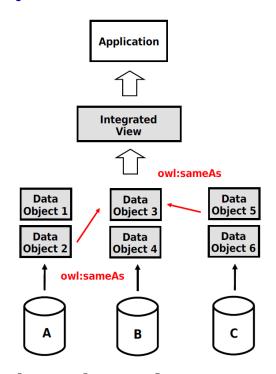
Nobody's perfect!

- Is the ontology a shared ontology?
- Does it make reference to well established ontologies?

Building ontologies: a methodology (or a rule of thumb?)

- Analyze and model your "world of interest"
- Check existing ontologies:
 - √ does one fits perfectly?

- Content of this slide does not necessary reflect the W3C position
- ✓ extend one with your own concepts?
- ✓ combine several existing ontologies?
- √ full import or just refer some class/properties?
- Based on my own experience:
 - √ creating your own ontology is easier, but less effective
 - ✓ using/combining/extending existing ontologies is harder, but more effective
 - √ keep intensional and extensional components separated



Ready to start?

- User requirements
 - ✓ Integrated view of information
- Data fusion: some well known problems
 - ✓ Schema mapping
 - ✓ Conflict resolution: inconsistencies
 - √ Trust / Information quality
- Reuse issues
 - ✓ Licences
- Implementation issues
 - √ How to publish
 - ✓ Platforms
- Aim: five (or seven?)star dataset, rich and shared ontology.
 However:
 - √ The best is the enemy of the good.
 - √ The important is to start, even with raw data
 - √ "One small step for man. One giant leap for mankind."

References

- Linked Data (Tim Berners-Lee)
- Tim Berners-Lee on the next Web (presentazione a TED2009, con sottotitoli in varie lingue)
- http://esw.w3.org/LinkedData (Wiki W3C)
- http://linkeddata.org/
- Linked Data The Story So Far (Bizer, Heath, Berners-Lee) preprint
- ❖ Tom Heath, Christian Bizer: <u>Linked Data:</u> <u>Evolving the Web into a Global Data Space</u>

Conclusion

- LOD have been part of the Web since its inception
- The main benefit is to share and improve knowledge
- RDF is the basis
- SW technologies are crucial
- Share ontologies (intension)!
- Keep data decentralized (extension)!
- START NOW

Thank you for your attention!

Slides at: http://www.orestesignore.eu/talks/2019/sw/lod.pdf

